skip to main content


Search for: All records

Creators/Authors contains: "Garnero, Edward J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    Seismic traveltime anomalies of waves that traverse the uppermost 100–200 km of the outer core have been interpreted as evidence of reduced seismic velocities (relative to radial reference models) just below the core–mantle boundary (CMB). These studies typically investigate differential traveltimes of SmKS waves, which propagate as P waves through the shallowest outer core and reflect from the underside of the CMB m times. The use of SmKS and S(m-1)KS differential traveltimes for core imaging are often assumed to suppress contributions from earthquake location errors and unknown and unmodelled seismic velocity heterogeneity in the mantle. The goal of this study is to understand the extent to which differential SmKS traveltimes are, in fact, affected by anomalous mantle structure, potentially including both velocity heterogeneity and anisotropy. Velocity variations affect not only a wave's traveltime, but also the path of a wave, which can be observed in deviations of the wave's incoming direction. Since radial velocity variations in the outer core will only minimally affect the wave path, in contrast to other potential effects, measuring the incoming direction of SmKS waves provides an additional diagnostic as to the origin of traveltime anomalies. Here we use arrays of seismometers to measure traveltime and direction anomalies of SmKS waves that sample the uppermost outer core. We form subarrays of EarthScope's regional Transportable Array stations, thus measuring local variations in traveltime and direction. We observe systematic lateral variations in both traveltime and incoming wave direction, which cannot be explained by changes to the radial seismic velocity profile of the outer core. Moreover, we find a correlation between incoming wave direction and traveltime anomaly, suggesting that observed traveltime anomalies may be caused, at least in part, by changes to the wave path and not solely by perturbations in outer core velocity. Modelling of 1-D ray and 3-D wave propagation in global 3-D tomographic models of mantle velocity anomalies match the trend of the observed traveltime anomalies. Overall, we demonstrate that observed SmKS traveltime anomalies may have a significant contribution from 3-D mantle structure, and not solely from outer core structure.

     
    more » « less
  2. SUMMARY

    Structure of the inner core is often measured through traveltime differences between waves that enter the inner core (PKPdf) and waves that travel through the outer core only (PKPab and PKPbc). Here we extend the method to converted waves PKSdf and SKPdf and compare results to PKP wave measurements. PKSdf and SKPdf have a very similar path to PKPdf and if velocity variations are present in the inner core, all three wave types should experience them equally. Since traveltime deviations can be due to velocity changes (either isotropic or anisotropy) as well as wave path deviations born from heterogeneity, we simultaneously investigate wave path directions and traveltimes of PKP, SKP and PKS waves for several source-array combinations. One of the path geometries is the anomalous polar corridor from South Sandwich to Alaska, which has strong traveltimes anomalies for PKPdf relative to more normal equatorial path geometries. Here we use array methods and determine slowness, traveltime and backazimuth deviations and compare them to synthetic data. We find that path deviations from theoretical values are present in all wave types and paths, but also that large scatter exists. Although some of the path deviations can be explained by mislocation vectors and crustal variations, our measurements argue that mantle structure has to be considered when investigating inner core anisotropy. Our polar path data show similar traveltime residuals as previously published, but we also find slowness residuals for this path. Interestingly, SKPdf and PKSdf for the South Sandwich to Alaska path show traveltime residuals that are partly opposite to those for PKPdf, possibly due to an interaction with a localized ultra-low velocity zone where waves enter the core.

     
    more » « less
  3. Anomalies along Earth’s core can be explained by former oceanic seafloor that descended 3000 km to the base of the mantle. 
    more » « less
  4. Abstract

    Much of our knowledge on deep Earth structure is based on detailed analyses of seismic waveforms that often have small amplitude arrivals on seismograms; therefore, stacking is essential to obtain reliable signals above the noise level. We present a new iterative stacking scheme that incorporates Historical Interstation Pattern Referencing (HIPR) to improve data quality assessment. HIPR involves comparing travel‐time and data quality measurements between every station for every recorded event to establish historical patterns, which are then compared to individual measurements. Weights are determined based on the individual interstation measurement differences and their similarity to historical averages, and these weights are then used in our stacking algorithm. This approach not only refines the stacks made from high‐quality data but also allows some lower‐quality events that may have been dismissed with more traditional stacking approaches to contribute to our study. Our HIPR‐based stacking routine is illustrated through an application to core‐reflected PcP phases recorded by the Transantarctic Mountains Northern Network to investigate ultra‐low velocity zones (ULVZs). We focus on ULVZ structure to the east of New Zealand because this region is well‐sampled by our data set and also coincides with the boundary of the Pacific Large Low Shear Velocity Province (LLSVP), thereby allowing us to further assess possible ULVZ‐LLSVP relationships. The HIPR‐refined stacks display strong ULVZ evidence, and associated synthetic modeling suggests that the ULVZs in this region are likely associated with compositionally distinct material that has perhaps been swept by mantle convection currents to accumulate along the LLSVP boundary.

     
    more » « less
  5. Abstract

    The carbon and water cycles in the Earth's interior are linked to key planetary processes, such as mantle melting, degassing, chemical differentiation, and advection. However, the role of water in the carbon exchange between the mantle and core is not well known. Here, we show experimental results of a reaction between Fe3C and H2O at pressures and temperatures of the deep mantle and core‐mantle boundary (CMB). The reaction produces diamond, FeO, and FeHx, suggesting that water can liberate carbon from the core in the form of diamond (“core carbon extraction”) while the core gains hydrogen, if subducted water reaches to the CMB. Therefore, Earth's deep water and carbon cycles can be linked. The extracted core carbon can explain a significant amount of the present‐day mantle carbon. Also, if diamond can be collected by mantle flow in the region, it can result in unusually high seismic‐velocity structures.

     
    more » « less
  6. Abstract

    Large numbers of earthquakes occur in subduction zones that are marked by dipping, narrow high seismic velocity slabs. The existence of these fast velocity slabs can cause serious earthquake mislocation problems that can bias estimates of seismic travel time residuals. This can affect the recovery of subducting slabs in tomography as well as introduce significant artifacts into lower mantle structure in tomography models. In order to better account for known subducting slabs, we performed a newPandSwave joint tomography inversion incorporating a three‐dimensional thermal model of subducting slabs in the starting model. In addition, velocity and source locations were inverted for simultaneously. Our newPandSmodels feature higher‐amplitude subducting slabs compared with previous global tomography results. TheStoPheterogeneity ratio based on the new tomography model indicates that thermal elastic effects alone cannot explain all the heterogeneities in the lower mantle. Much of the observed abnormalStoPheterogeneity ratio can be explained by anelastic effects, the spin transition, and phase transitions of bridgmanite to post‐perovskite in the lower mantle.

     
    more » « less
  7. Abstract

    We present a method for constructing the average waveform shape (hereafter called “empirical wavelet”) of seismic shear waves on an event‐by‐event basis for the purpose of constructing a high‐quality travel time data set with information about waveform quality and shape. A global data set was assembled from 360 earthquakes between 1994 and 2017. The empirical wavelet approach permits documentation of the degree of similarity of every observed wave with the empirical wavelet. We adapt the empirical wavelet to all pulse widths, thus identifying broadened (e.g., attenuated) pulses. Several measures of goodness of fit of the empirical wavelet to each record are documented, as well as signal‐to‐noise ratios, permitting users of the data set to employ flexible weighting schemes. We demonstrate the approach on transversely polarized SH waves and build a global travel time data set for the waves S, SS, SSS, Sdiff, ScS, and ScSScS. Onset arrival times of the waves were determined through a correlation scheme with best‐fitting empirical wavelets. Over 250,000 travel times were picked, from over 1.4 million records, all of which were human‐checked for accuracy via a Portable Document Format (PDF) catalog file making system. Many events were specifically selected to bolster southern hemisphere coverage. Coverage maps show that, while the northern hemisphere is more densely sampled, the southern hemisphere coverage is robust. The travel time data set, empirical wavelets, and all measurement metrics are publicly available and well suited for global tomography, as well as forward modeling experiments.

     
    more » « less